Ordered Matrix Inversion

John Gipson

December 17, 1998

Abstract

I derive the equations for two forms of fast-matrix inversion. I start by describing arc-
parameter elimination, and derive the explicit equation for the solution vector, and for the
covariance matrix. I generalize these results to the solution of “time-tagged” sparse normal
matrces. These are normal equations where for a large number of parameters data from only a
small interval contributes. Inverting the normal equations in time order results in a substantial
reduction in the time required to solve the normal equations. I refer to this technique as “Ordered
Matrix Inversion”. I compare this technique to the “B3D” algorithm derived by L. Petrov.

1 Introduction

Many problems deal with finding the solution to the matrix equations
NA=B

where N is an nxXn matrix, and A and B are n dimensional column vectors. In experimental sciences
these equations show up as the normal equations, and in what follows this is how I will refer to
them. If both the solution vector A and the covariance matrix N~ lare required, a straightforward
solution of the normal equations requires approximately n®/2 multiplications. If only the solution
vector A is required, the number of operations is reduced by a factor of 3 to n®/6. Even with
this reduction in computational cost, a straightforward solution is impractical for large matrices.
Because of this one must try to find various tricks to make the inversion faster. If the matrix is
sparse there exist canned routines which will perform the inversion for an arbitrary matrix. The
disadvantage of this approach is that since these are general purpose routines, they may not be the
most efficient. If you have some knowledge about the structure of the normal matrix you may be
able to invert it more efficiently. In this note I describe two techniques for inverting sparse matrices
which appear in geophysics.

In section 2 1 describe arc-parameter elimination, which has been described elsewhere in the
literature. I introduce it here in order to establish notation, and becaue it is a percursor to a more
general technique. Arc-parameter elimination arises in doing a combined solution from a series of
measurements. Some of the estimated parameters are common to many or all of the experiments,
and are called “global” parameters. For example, these might be station positions. The remaining
parameters appear in only a single experiment or arc, and are called “arc” parameters. These
parameters might be nuisance parameters, such as clock drift, or parameters of real geophysical
importance, but which vary from day to day. The structure of the normal equations makes possible
a fast matrix inversion.

In section 3 I describe another scheme for finding the solution to the normal equations which
is a generalization of arc-parameter elimination. This technique can be used when there is an
ordering of the normal equations so that most of the coupling (i.e., off diagonal elements) in the
normal equations is between nearby parameters, with some coupling to global parameters. For
example, in analyzing a single day of VLBI data, some parameters such as daily station position
are on for the whole experiment, i.e., they are influenced by all of the data. These would be the
global parameters. Other parameters, such as clocks, or atmospheres, are modeled as piecewise
linear functions. The parameters which describe these functions are on for only a finite amount
of time. Therefore they will couple with the global parameters,and other parameters whose “on-
times” overlap.By squeezing out parameters as they are turned you can substantially reduce the
time to solve the normal equations. I call this algorithm OMI, for Ordered Matrix Inversion.

In section 4 I briefly compare OMI with the B3D method of L. Petrov. I argue that OMI more
general, and easier to implement.

Section b describes Fortran code which implements this algorithm, and tells where it is located.

2 Arc Parameter Elimination

In this section we describe the arc parameter elimination algortihm. This is suitable when we
are dealing with normal equations which arise from combining many different experiments, and
some of the parameters are common to all of the experiments, while others appear only in a single
experiment. The combined normal equations can be written as.

NiotAtot = Biot (1)

Here N, is the total normal matrix, A¢,: are the parameters we are solving for, and Bg,: are the
“O-C"’s. This can be re-written as:

Ngg Nyt Ngo . Ngn A, B,
Ny Ny 0 ... 0 Ay By
Nayg 0 Npg ... O A | =] By (2)
Nog 0 0 ... Npp As Bs

here the N’s are rectangular sub-matrices. The Ny, are the normal equations restricted to the
global parameters; the N; the normal equations restricted to the arc parameters for a given arc;
and the Ny the cross terms between the arc parameters and the global parameters. There are no
cross terms between the different arcs. In general the size the sub-matrices are different for each
arc. Because N is symmetric overall we have:

NL = Ny (3)
NI = Ny (4)
NE = N (5)

A straightforward algorithm for the solution vector, that is, the A’s, takes on order of dim(NtOt)?’ /6
multiplications, where dim(N;,) is the total number of parameters. If we are also interested in the
covariance matrix, that is Ny, , we need to do another dim(Nyt)® /3 multiplications. For a standard

global solution the number of parameters is on the order of 106, A straightforward solution of either
the solution vector or the covariance matrix would be almost impossible.

Apart from the first “row” and “column” of Eq. (2) the total normal matrix is strictly block
diagonal. This allows a considerable speed up, both in the solution of the normal equation, and in
the calculation of the covariance matrix.

2.1 Solution of Normal Vector

Equation (2) can be rewritten as the set of coupled equations:

NggAg + ZNgiAi = Bg (6)
i
NigAg + Ny A; = B; (7)
The second of these, Eq. (7) can be solved for the A,
Ai =Ny Bi = N;; ' Nig A, (8)

which when substituted into Eq. (6) gives
(Ngg - ZNgiNz‘z‘lNig> Ag = Bg — Z Ngz‘NﬁlBi (9)
i i

which can be readily solved for the global parameters A,:

-1
Ag = (Ngg - ZNQiNiilNiQ> (Bg - ZNQiNiilBi> (10)
i i

The solution for A, can in turn be substituted into equation (8) to find the solution for the arc
parameters.

2.2 Solution of Covariance Matrix

In addition to the solution of the normal matrix, that is, the A’s, we are also interested in the
formal errors of the parameters, in which case we need the diagonal elements of Nt;tl. We may
also be interested in the correlation and covariance information, in which case we also need the
off-diagonal elements. Consider the equation

Ngg Ngi Ngg . Ngn Mgy Mg Mg ... Ngn 10000
Nig Ny 0 .. 0 My, My My .. My 01000
Nyg O Ny .. O My, My My .. Mg |=|0 0 1 00 (11)
00010
Nog 0 0 .. Npn Myg Mpy My .. Npp 0000 I

where M;,; = N,,}. and each of the smaller M’s is a rectangular submatrix. This leads to the
coupled set of matrix equations:

NggMgg + ZNgiMig = I (12)
i

NigMgg + N“Mlg = 0 (13)

NigMg; + NyyMy; = 1 (14)

Nigng + NiiMij = 0 (Z <> j) (15)

Equation (13) can be re-written as:
Mig = _NileiQMQQ (16)

which gives the covariance of the arc and global parameters. When substituted into equation (12)
we get

(Ngg - ZNgiNz‘z‘lNig> Mgg =1 (17)
i
or

-1
Mgy = (Ngg - ZNgiNz‘z‘lNig> (18)
i

Equation (18) gives the covariance matrix of the global parameters with each other, and the form
is what you would naively expect based on Eq. (10). The square root of the diagonal elements are,
of course, the formal errors for the global parameters. Substituting the transpose of equation (16)
into equation (14) we get:

My = Nif + Nz‘leigMggNgiNizl (19)

which is the covariance of the arc parameters for a particular arc with each other. Again, the square
root of the diagonal elements are the formal errors of the arc parameters for this particular arc.

If all we are interested in is formal errors, or of the covariances of the arc parameters with
themselves, the global parameters with themselves, or of the arc-global covariance, this is as far
as we need to go. In fact, this is typically as far as solve goes. However, if we want to find the
correlation of arc parameters in one arc with the arc parameters in another arc we need to go
further. Transposing equation (16) and making the substitution ¢ — j, and then putting the result
into equation (15) we find:

M;; = Nz‘leigMggNngfjl (20)

which gives the “arc-arc” covariance, i.e., the covariance of arc-parameters in one arc with those of
arc-parameters in another arc.
2.3 Timing Considerations

In this subsection we compare the time for arc-parameter elimination with the straightforward
solution. For simplicity we assume that all arcs have the same number of parameters. Let

N, = Number of arcs (21)
N4 = Parameters per arcs (22)
N = Global parameters (23)
Np = Total parameters (24)
= Ng+ NgresNa (25)
Then the naive, straightforward solution to the normal equations goes like
time naive = N, /2 (26)

Time for Forward Solution. The matrix calculations we do in the forward direction, and
the number of operations is summarized below:

Computation Number of multiplications

N N3 /2

Ny N1 NgN? (27)
(NgaN(;al) Nuo NZNa/2 (the factor of 1/2 because the matrix is symmteric)

Total per arc ~ Na(N4 + Ng)?/2

At the end of the forward solution we do one final inversion. The total number of operations is
then:

time__forward = Ng/24 Ngpe X Ng x (Ng + Ng)?/2 (28)
= N&/2+ (Nt — No)(N4 + Ng)?/2 (29)
~ Np(Na+ Ng)?/2+0(1) (30)
where I have kept the leading term in Np. The ratio of the naive time to the forward time is:
time naive/time forward = <L>2 (31)
Na+ Ng

o N2 <L>2
arc NA +NG

If we have a 10® arc solution, then arc-parameter elimination saves a factor of 108 in time, which

(32)

is substantial indeed.

Time for Back Solution. Usually we are only interested in the covariance for the parameters
of a particular arc. We are not interested in the full covariance matrix which involves arc-arc
correlations. The table below summarizes the calculations needed, and the number of operations
needed in the usual case.

Computation Number of multiplications
Mgg (NgaNog') NENa

(Naa Nag) Mgg (NgaNao') — NiNG/2

Total per arc with storage NaNg(Ng + Na/2)

(33)

This table assumes that we store the matrix Ny N, which is calculated in the forward direction.
If we don’t do so we need an additional N%(NG + N4 /2) multiplications per arc, as can be see from
the previous table. The total time for the back solution is:

time_back = NgeNaNg(Ng+ Na/2) (34)
= (Nt — Ng) Ng x (Ng + Na/2) (35)
~ Nt X Ng X (Ng+ Na/2) (36)
The ratio of the naive solution time to the back solution time is:
‘ o N2
time naive/time_back = Ng(QN;Ot—I—) (37)
Ni

.
%

which is about the same size as for the forward solution.

3 Solution of Normal Equations by Reduction and Augmentation

In this section we give a scheme for solving arbitrary normal equations which is closely related to
the arc-parameter elimination of the last section. At the end of the section we specialize to the
case of solve.

3.1 Solution of Normal Vector

We start by dividing the normal equaitons into two sets of parameters which we will label g and a.
Without loss of generality the normal equation can then be written as:

Ngg Nya Ag \ _ (By
(8)=(5) ®

This matrix equation can be rewritten as the two coupled equations

NogAg + NyaAa = By (40)
NogAg + NoyoAs = Bq (41)
Equation (41) can be solved for Ag:
Ag= N(;alBa - Nr;alNagAg (42)
which when substituted into equation (40) leads to:
(Ngg - NgaNJalNag) 4y = By - NgaN;alBa (43)
N Ay = By — NgaNg, Bq (44)
This in turn can be solved for the A,
Ag = Nyg" (By = NyalNog' Ba) (45)

which can be substited into (42) to find the A,.

The process of reducing the size of the normal equations is sometimes called “squeezing-out”
the A,. The reduced normal equations can again be reduced by another partition. We can continue
doing so as long as we want. When we are finally done, we invert the last equation, and start
building up the solution to the normal vector.

3.2 Derivation of Covariance Information

In this section we derive the equations for the covariance. Substitituting Eq. (45) into Eq. (42) we
find
Aa = Nog' Ba = Nog! Nog Npg (By = NyaNoo' Ba) (46)

Combining this with Eq. (45) we arrive at the matrix equation:
AQ — Né;l NéglNgaNt;al BQ (47)
A, N(;alNagNgfgl N+ N;alNagNgfglNgaN;al B,

— N} (o) (48)

There are several comments to be made concerning this equation.

1. The covariance of the A, is what you would niavely expect, namely Né;l = (Ngg—Nya Nyt Nafgl)*l.
2. The covariance of the A, is N, ! + N;alNagNgfglNgaN(;al.

3. More generally, given the covariance of the reduced normal equations (43), and the matrices
Nyq and Nl it is straightforward to construct a solution to the normal equations one level

up.

The general scheme is then clear. There are two processes: reduction and augmentation. In
reduction we succesively squeeze out parameters until we are as far down as we can go. We solve
for the remaining parameters. We then use this solution to solve for the “arc-parameters” one level
up. This in turn is used to solve for the arc-parameters one level further up, and so on, until we
are done. If we are only interested in the values of the arc-parameters, and not their formal errors,
we are done. If we are interested in the formal errors, then we also need to build up the covariance
matrix level by level.

3.3 Application to solve

The normal equations for an individual experiment in solve are sparse. The parameters typically
consist of a few “arc-global” parameters, such as station position, EOP and baseline clocks, which
take the same value for the entire arc. In addition there are “arc-arc” parameters where the
normal equations are only influenced by a (usually small) subset of the total data. In contrast
to the situation in arc-parameter-elimination, arc parameters which are adjacent to each other
in time couple. For example, the clocks and the atmospheres are usually modeled as piecewise
linear functions. If the atmosphere tabular points occur each hour, then each atmosphere partial
is only effected by two hours of data—one on either side. Because of this there is no coupling with
atmosphere or clock partials which are more than one hour apart. We can use the local nature of
the coupling to derive a fast method of solving the normal equations.

The general scheme is as follows. We process the normal equations in time order, squeezing out
parameters as they are turned off. At the end of the forward direction we are left with parameters
which remain on at the end of the experiment. This includes the parameters which are on for the
whole experiment, which is often all that we are interested. The solution to the reduced normal
equations gives us the estimates for these parameters and their covariances. If this is all that we
are interested in, then we are done. If we are interested in the values of the parameters which are
squeezed out, we can do a simple back solution to find them. If we are interested in the covariance
of these squeezed out parameters, we can do a more involved back solution. In the following we
make this discussion concrete.

At any given stage in the processing, we divide the parameters into three sets. 1.) The “current-
arc” parameters are the parameters we are getting ready to squueze out. 2) The “current-global”
parameters are all parameters which couple to the current-arc parameters; 3) The remaining pa-
rameters do not couple to the current-arc parameters, although they may to the global parameters.
We will label these three sets of parameters a, g, and r.

Forward Direction. We start by finding the first set of parameters which turn off.. Let the
time they turn off be given by fend. These parameters will be the current-arc parameters. The
current global parameters will be any of the other parmeters which were turned on prior to tend.
The remaining parameters are those parameters which do not turn on until after {end, and hence
do not couple to the current-arc parameters. By assumption, the normal equations take the form:

Ngg Ngr Nga Ag By
Nrg Npp 0 A, | =1 B- (49)
Nag 0 Naa Aa Ba

We can solve this equation for the Ag:
o= 2B~ [N 4 0
After squeezing out the current-arc parameters, the reduced normal equations are:

(Nyg — Nya [Neg' Nag] Ny) (Ag) _ (By — [NgaNgd'] Ba) (51)

Nrg Npr Ar N By

I have indicated by [| matrices which are related by transposition. For use in the backward direction
we want to store the matrices and vectors N, !, N !B, and Ny N,'. These can be stored “in
place”:

Nuw — N} (52)
Ba — Nc;alBa (53)
Nya — [NgaNg.!] (54)

where « means replacement, and the order these equations appear in represents the order the
calculations are done.

We now search for the next set of parameters which are turned off, and squeeze them out in
turn.

The above form of the normal matrix made explicit the lack of coupling between the current-
arc and remaining parameters. We do not need to rearrange the normal equations in this form in
order to take advantage of this. The required matrix multiplications and inversions can be done by
appropriately indexing into the original normal matrix or by copying the required matrix elements
into temporary arrays, and doing the calculations upon them, and copying them back Although
this seems like a lot of copying, since the number of current-arc and current-global parameters at
any time is small, the size of the temporary arrays is small, and the overhead involved in doing the
copying is also small.

Final Inversion. At the very end of the forward direction we invert the remaining matrix.
This might happen when we have no more current-arc parameters, or when the matrix is small

enough that the extra book-keeping used in squeezing out parameters is not worth it. In any case,
when the final matrix is inverted, we are left with a solution for the remaining parameters, and
their covariances. For many purposes these are the only parameters we are interested, and we
could stop at this stage.

Augmentation: Backward Direction. In augmentation we start with the reduced normal
equations at some level, and derive the equations one level up. If all we are interested in is the
solution vector, we can use Eq. (50) to find the arc parameters A, we are adding. We have
previously calculated and stored N(;(llNag so this computation is very simple.

If we are also interested in the full covariance we need to do some extra work. Explicity, assume
that covariance matrix at some stage is given by:

My, M,
Cov(g,r) = 99 T Ir 55
(9.7) (Mm Mw) (59)
Then the covariance solution to the augmented normal equation is:
Myq Mg, _MggNgaNJal
Cov(g,r,a = M, M, — My Ngo N ! (56)

—Nao' NagMgg =Ny NogMgr Nog' + Nog' Nag Mg Nag Ny

Note that in the lower-right corner of the covariance matrix there is no term involving IV, (;al NgrMyr Ny N, (;al
since by assumption N, vanishes. To find this augmented matrix we must calculate the following
matrices: 1.) Mgy (NgalNgg'); 2.) Mgr (NgaNgg'); and 3.) (Ngg! Nag) (MggNagNgg') where I have
enclosed by (..) matrix combinations which have been previously calculated.

The reason that this entire process is faster than the algorithm currently used in solve is that in
both the squeezing out and augmentation phase we rely on submatrices of the normal or covariance
matrices being 0. A random choice of what parameters to use as current-arc parameters will not
in general lead to a lot of zeros. Fortunately, there is a natural way of choosing the parameters to
squeeze out, namely the time ordering of the parameters.

It is clear that this algorithm will work for any situation where there is a natural ordering of the
parameters. For example, this could be used in matrices which deal with finite difference models
of bridges, where the ordering parameter would be distance along the bridge. For this reason I call
the general technique Ordered Matrix Inversion, or OMI.

3.4 Timing Consideration

In this section we calculate the time involved to solve for a typical solution using the algorithm
outlined above. Assume that there are Ng global parameters, that is parameters which are on for
the whole experiment. For simplicity assume that the clocks and atmospheres are the only time-
varying parameters, and that they both parametrized in the same way. For example, both have
one hour rate breaks. Let Ng.. be the number of tabular points for the clocks and atmospheres,
and N4 the number of clocks plus atmospheres. Typically we have:

NA = Nclk + Natm = 2Nstat -1

where N, are the number of clocks, Ny, the number of atmospheres, and N the number of
stations.The total number of parameters is:

NT:NG‘I’NW’C X NA

For a typical 7 station experiment where we estimate EOP, gradients, and baseline clocks, and
clocks and atmospheres have half-hour rate breaks, we have:

Ne = 711 (57)
Ny = 13 (58)
Nares = 49 (59)
Ny = 708 (60)
The time it takes to find the solution using the standard solve algorithm is:
time_solve = dim(Ny)? /2 (61)

We want to compare this with a solution using the techniques of the previous section.
Forward Direction. For each arc in the forward direction we have the following steps involving
matrix multiplication or inversion:

Computation Number of multiplications

Neg na/2

NgaNoq, ngny (62)
NygaN ' N, n2nq/2 (1/2 because the matrix is symmteric)

Total na(ne +ng)?%/2

Here n, and ny are the dimensions of the current-arc and current-global matrices, and I have kept
only these terms of order n®. In the simplest case ng and ng will remain constant for each arc, and
the total number of operations in the forward direction is then

Nares X na(ng +1ng)?/2 (63)

In the example at the start of this section, initially the current arc parameters will be the
estimates of the tabular values for the first epoch of the clocks and atmospheres. The total
number of tabular values per epoch is V4. These current arc parametes couple to the truly global
parameters. They also couple to the tabular points for the next epoch. Hence:

ng = Na

ng = Ng + Ny

Once the first set of arc parameters is squeezed out, the situation is exactly the same for the next
set of arc parameters.
At the very end of the forward solution we invert the remaining global parameters. This has
on order of ng /2 multiplications. The total number of multiplications is then:
time forward = {chs X Ng(ng + ng)2 + ng} /2
= (Wit = N&) (2Na + Ne)” + (Na + No)*| /2
~ Nyt (2Na + Ng)? /2

10

where T have kept the leading terms in Np. Dividing Eq. (61) by this we find:

2
time_solve/time forward ~ <L>
2Na + Ng
Since Np depends linearly on the number of arcs, that is, the number of rate breaks for the clocks
and atmospheres, this expression will grow quadratically as this number is increased. For a typical
experiment with 20-minute atmospheres, this ratio can easily be on the order of 100. For the
concrete example given above the ratio is 40. If we are just interested in the solution vector and
the covariance of the global parameters, we do not need to do a full back solution. The above ratio
is the approximate speed up in this case.
Backward solution. In the backward solution we have the following operations:

Computation Number of multiplications

Mgg (NgaNed) ngna

Mrg (NgaNog') NrTgTa (64)
(Nt;alNag> Myq (NgaNaTzl) n?zng/2

Total ngna(ng + ny + ng/2)

In the simplest case, the number of current global and current arc parameters remains constaint,
while the number of current other grows linearly. We return again to the example at the start
of this section. At the beginning of the back solution, the current arc parameters will consist of
the tabular values at Ngr. — 2. The current-global parameters will be the truly global parameters,
and the tabular values at Ng.. — 1. The current remaining parameters will be the tabular values at
Nyre. After the next round of augmentation, the current arc parameters will consist of the tabular
values at Ng.. — 3. The current-global parameters will be the truly global parameters, and the
tabular values at Ng,.. — 2. The current remaining parameters will be the tabular values at Ng.. —1
and Ng... Hence

Nyl = Ng (65)
N = 2ng (66)
ne3 = 3ng (67)
(68)
The total number of operations in the back direction will be:
num_tot = Ngpes X Ngng(ng + na/2 + (Nares — 1) /2 X ng) (69)
= Nyres X ng”a(”g + ng X Narcs/2) (70)
= (NT—Ng) X(Ng—I-NA)X [NG—I-NA+<NT—Ng)] (71)
~ (Ng+ Na) x N7./2 + O(Ny) (72)
where T have just kept the leading term in Np. Dividing Eq. (61) by this we find:
ti lve/time_backward N (73)
tme__solve/time backward o~ ——————
- - Na+ Ng

For the above example this will be a factor of 6. This grows approximately linearly with the
number of arcs.

11

4 Comparison with B3D Algorithm of L. Petrov

In December of 1996 I became aware of work by L. Petrov on fast matrix inversion in solve. Petrov’s
fundamental insight was that the solve normal equations for each arc are sparse, while the matrix
algorithm we used was for an arbitrary array. Petrov derived a technique for fast matrix inversion
which he called the B3D algorithm. This method relies on the structure of the normal equations, in
particular the fact that clocks and atmospheres are represented as piecewise linear functions. This
scheme was subsequently extended to include piecewise linear EOP estimates. Petrov’s has the
restriction that the interval used for clocks, atmospheres and EOP must all be commensurate, and
that the tabular points must all be aligned. By construction it makes use of the implicit structure
of the normal equations used in solve: These paraticular parameters must occur in such and such
an order. In fact Petrov’s scheme actually expands the use of implicit data structures in solve,
which makes modification of the code more difficult.

Because of the restrictions of Petrov’s code, and also because I found his algebra hard to
follow, I began to wonder if there was an alternative scheme for fast matrix inversion which took
advantage of the sparseness of the normal equations, but did not have the restrictions of B3D, and
also did not rely on the implicit structure of the normal equations. I also wanted a routine that I
could understand. This is the genesis of the OMI algorithm derived in the previous section, and
implemented in the following section in Fortran. I originally implemented this routine in March of
1997. This algorithm has the following advantages over B3D:

1. No implicit assumptions are made about the form of the normal equations. Instead the
structure is derived from two auxiliary arrays tb and te which indiciate when the parameters
are turned on. Hence this routine can be applied to an arbitrary time-tagged matrix.

2. There is no restriction on either the intervals or tabular points of clocks, atmosphers, and

EOP.

3. If other parameters are estimated as piecewise linear functions, OMI will automatically han-
dle them in an optimal fashion. In contrast, B3D would have to be rewritten to optimize
performance.

4. OMI will automatically handle different parametrizations. For example, we could represent
atmospheres as piecewise offsets, and this routine would handle this correctly. Or we could
represent clocks as piecewise linear cubics.

5. OMI is close to being “plug-compatible” with the standard matrix inversion in solve. Since
all of the bookkeeping is done internally, all you need to do is supply the auxiliary arrays tb
and te. In contrast the implementation of B3D makes massive changes to solve to implement
the book keeping required.

That being said, I believe that B3D may be slightly faster faster than OMI, say 30%. However,
both of the algorithms result in a substantial speedup (on the order of 10-20 or greater) in the
solution of the normal equations with a large number of stations. Suppose that B3D was twice as
fast in matrix inversion as the algorithm described above, so that it speeed up matrix inversion by
a factor of 40, instead of a factor of 20. Assume that matrix inversion takes 50% of the time of a
solution in solve, and that a full solution takes 80 seconds. Then under B3D the time would be

12

reduced to 40+1 seconds, while using OMI the time would be reduced to 4042 seconds. I think
everyone would agree in this example that it implementing either OMI or B3D is worthwhile, since
they both result in an almost 50% reduction in the time required to solve for the normal equations.
However it is unclear wether the additional 1% reduction achieved by using B3D as opposed to
OMI is worth the additional restrictions.

5 Fortran Code Which Implements Fast Matrix Inversion.

The following subroutine is the concrete implementation of the ideas mentioned in this note. The
full routine involves a lot of bookkeeping, and is 600 lines of code. The fragment presented below just
shows the bookkeeping involved. The use of the full routine in norml can be found by looking at the
code in leo.gsfc.nasa.gov//datal8/mk3/src/solve/norml _jmg fast. It’s use in arcpe is illustrated
in leo.gsfc.nasa.gov//datal8 /mk3/src/solve/arcpe jmg fast.

On entry the array A is the normal matrix stored in lower triangular form, B is the “O-C” vector,
and tb and te are arrays which contain the starting and stopping time of each parameter. Nparm
is the number of parameters. The parameter icov controls whether we only want the covariance
of the arc-global parameters (icov=0), the full covariance matrix (icov=2), or an approximation of
the full covariance matrix. (icov=1).

The array indb is a key into the parameters sorted in increasing order of ¢b, and decreasing
order of te. This is the order that we add the parameters to the active list. The array inde
sorts the parameters by increasing fe and decreasing tb. This is the order that we squeeze the
parameters out. The routine that squeezes them out is called reduce normal. When we are all
done squeezing them out, we start the back solution. The routine that builds up the back solution
is called append normal.

Gk stk sk sk ok ok ok ok ok o ok sk sk sk ke ok ok o ok ok ok sk sk sk sk ok sk o ok ok sk sk sksk sk ok s ok ok ok ok ok sk sk ok ok ok ok
subroutine jmg fast_solve(A,B,tb,te,nparm,icov)
implicit none

C this routine inverts a normal matrix given in triangular form
C on entry A-- normal matrix in triangular form.
C B-- 0-C vector
c tb, te arrays which indicate how long a parameter is on for.
C on exit
c A,B -- solution to normal equation.
C
C General scheme:
C ©Solve normal equations iteratively, squeezing out stuff one as we go.
C Start with smallest time interval, proceed to largest.
C
C For more detailed info, see memo by JMGipson, May 18, 1998.
C
integer (kind=2) nparm
double precision A(nparm*(nparm+1)/2) Inormal matrix
double precision B(nparm) Inormal vector

13

double precision tb(nparm) Iparameter is turned on now.

double precision te(nparm) ! ...and off now.

integer*2 icov licov=0 don’t compute covariance
licov=1 compute simplified
licov=2 Compute full

C local variables
C automatic local arrays used in sorting.

integeR#2 indb(nparm) lsort key for start time.
integer*2 inde(nparm) lsort key for end time
integer*2 ib_ptr,ib_ptrO lpointer into start time key

integer*2 ie_ptr,ie_ptrO

C index arrays

integeR#2 ind_tot(nparm) !Index for all parameters this arc.
integer*2 ind_glb(nparm) ITndex for the global parameters.
INTEGER#2 ind_rst(nparm) lAnother index for the ’’rest’’ of the parms

integer*2 num_rst

C number of parameters to add, number to subtract this arc, num globals
INTEGER*2 max_arc,max_glb_per
INTEGER*4 max_tot
parameter (max_arc=200,max_glb_per=200)
parameter (max_tot=max_arc*max_glb_per)

INTEGER#2 ind_gta(max_tot) lpointer into array containing global paramet
INTEGER*4 igta_ptr

INTEGER*2 num_arc,iarc lactual number of arcs, and do index
integer*2 num_arc_arc,num_glb_arc

integer*2 num_arc_vec(max_arc) 'number of arc parms this arc
integer*2 num_glb_vec(max_arc) Inumber of global this arc

integer*2 num_tot Inumber of parameters (glb+arc)
integer*2 num_2_add 'number to add.

Get two indices into parameters.
Both indices sort on 1.) when they are turned on. and 2.) when they are off.
indb is sorted A.) First by increasing tb; B.) then by decreasing te;
inde is sorted A.) First by increasing te; B.) then by decreasing tb;
This is done so that when we build up the ’’global’’ matrix we minimize reordering.

call indexxr8id(nparm,tb,te,indb)

14

call indexxr8id(nparm,te,tb,inde)
C start building normal equations in ’’time order’’

C ib_ptr -- points to where we are in putting in parameters.
C i.e. we have all observations before tb(indb(ib_ptr)).
C similarly for ie_ptr.
ib_ptr=1
ie_ptr=1
C where we are in the arcs.

num_tot=0

iarc=0
igta_ptr=1

C———————————————— this is the forward direction.--—————-———--—------
FORWARD: DO

C 1. Add in parameters

c A. Find out how many parameters to add to aglhb.

C This is # between tb(inbd(ib_ptr)) is before te(inde(ie))
ib_ptrO=ib_ptr
do while(ib_ptr .le. nparm .and. tb(indb(ib_ptr)) .le. te(inde(ie_ptr)))

ib_ptr=ib_ptr+l

end do

C B. augment the global matrix.
num_2_add=ib_ptr-ib_ptr0
ind_tot (num_tot+1l:num_tot+num_2_add)=indb(ib_ptrO:ib_ptr-1)
num_tot=num_tot+num_2_add

C if no more parameters, done with forward part.
IF(ib_ptr .GT. nparm) exit
C
C 2. Squeeze out parameters
C A. Find out which ones to remove
ie_ptrO=ie_ptr
do while(ie_ptr .le. nparm .and. te(inde(ie_ptr)) .le. tb(indb(ib_ptr)))
ie_ptr=ie_ptr+l
enddo
num_arc_arc=ie_ptr-ie_ptr0

C At this stage inde(ie_ptrO:ie_ptr+num_arc_arc-1) contains index into arc parameters
C ind_gta(igta_ptr:igta_ptr+num_glb-1)
C We also need the index into the global parameters.
call get_other_ind(ind_tot,num_tot,inde(ie_ptr0) ,num_arc_arc, ind_glb,num_glb_arc)

15

call reduce_normal(a,b,nparm,inde(ie_ptr0) ,num_arc_arc,ind_glb,num_glb_arc)

C update arc stuff
iarc=iarc+1

C need space for triangular matrix Rectangular.
num_arc_vec (iarc)=num_arc_arc
num_glb_vec(iarc)=num_glb_arc

C this is index of globals this arc.
num_tot=num_glb_arc
ind_tot(1l:num_tot)=ind_glb(l:num_tot)

C this is index of globals this arc.
ind_gta(igta_ptr:igta_ptr+num_glb_Arc-1)=ind glb(l:num_glb_arc)
igta_ptr=igta_ptr+num_glb_arc

END DO FORWARD

C done with forward direction. Now invert remaining parameters.
call indexed_invert(a,b,ind_tot,num_tot)

Cx*xStart of back solutiomkkkkkkokskskskskskskokokokokokokokokokokokokokokokok ok ok ok ok ok ok ok ke ke ke ke ke ok ok ok ok ok ok ok ok ok
C and add arc parameters an arc at a time.
num_arc=iarc
do iarc=num_arc,1,-1
num_arc_arc=num_arc_vec(iarc)
num_glb_arc=num_glb_vec(iarc)
ie_ptr=ie_ptr-num_arc_arc
igta_ptr=igta_ptr-num_glb_arc

call get_other_ind(ind_tot,num_tot,ind gta(igta_ptr) ,num_glb_arc,
> ind_rst,num_rst)

call append_normal(a,b,nparm, inde(ie_ptr) ,num_arc_arc,
> ind_gta(igta_ptr) ,num_glb_arc,ind_rst,num_rst,icov)

C update index.
ind_tot(num_tot+l:num_tot+num_arc_arc)=inde(ie_ptr:ie_ptr+num_arc_arc-1)
num_tot=num_tot+num_arc_arc

end do

return
end
€ 5k sk sk ok ok ok ok sk sk sk 3k 3k 3k oK oK ok ok 3K 3K 3K 3k 3k 3k 3k 3k 3k ok 3k 3K 3k 3k 3 3k 3 3k 3k ok ok ke ke ke ke sk ok ok ok sk sk sk sk ok sk sk sk sk ok ok sk sk ok ok ok sk ok ok ok ok sk sk ok ok 3k 3K 3K oK oK oK ok 3K 3K 3K 3K 3K oK K

16

